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1»  Outline of Problem* 

One of the striking results of modsrn astrophysics is the 

ubiquity of magnetic fislds in the universe.  At present we know 

a large number of stars with magnetic fields of the order of sev- 

eral thousand gauss (Babcock and Cowling, 1953).  A rather large 

fraction of them., if not all, have variable fields, so much so 

that one is tempted to consider variability as an intrinsic feature 

of magnetic starss  Moreover, there is evidence that the clouds 

of rarefied gas which are found in galactic space carry magnetic 

fields.  The most successful theories of the origin of cosmic 

rays seem to be those that assume the acceleration of cosmic- 

ray particles to be caused by the mean action of these fields 

(Ferai, 1949j Morrison, Clbert, and Hnssi, 1954). 

Th'i theory of hydromagnetlsm, or magnet©hydrodynamics, 

has only fairly recently been developed in an effort to explain 

these cosmic magnetic fields, and it bids fair to provide such an 

explanation.  As we shall see (Sec. 4) small stray magnetic fields 

can be amplified by the action of suitable fluid motions.  Now 

fluids of large dimensions are a? a rule highly turbulent,,  One 

might therefore expect the velocity distribution of these fluids 

to follow some statistical pattern, so that the amplification of 

stray magnetic fields may be determined from statistical prin- 

ciples. The final result of such randomly distributed 

The woi-us hydromagnetlsm and magnetohydrodynamics, 
and the corresponding adjectives have been used rather indis- 
criminately in the literature.  We are using here the former 
term for aesthetic reasons and as being more economical of space. 
This usage has the approval of the distinguished Secretary of 
the American Physical Society. 
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amplificatory processes would then be a statistical equilibrium 

between the turbulent motion and the more or less irregular mag- 

netic fields generated.  This is the approach taken by Batchelor 

(1950) who succeeded in estimating the magnetic spectrum that 

would be in equilibrium with the velocity spectrum of turbulence. 

Surch a picture gives us a first insight into the mechanism of 

the generation of magnetic fields under the conditions studied 

by the astrophysicist.  It indicates in a provisional fashion at 

least; that the hydromagnet.tc theory can account for the presence 

of magnetic fields in the universe without ad hoc assumptions» 

the generation of magnetic fields of the order of magnitude ob- 

served follows without difficulty from the application of 

Maxwell's electromagnetic field equations to moving, electrically 

conducting fluids of large dimensions (Sec. 2). 

From this viewpoint the older experiences regarding 

mssgtsetie fields of tne earth and the sun appear in a new light. 
f 

They are taken out of their conceptual isolation and appear as 

special cases, relatively more accessible to our observation, of 

a universal phenomenon.  The pertinent facts concerning the 

earths interior which form the physical background for the 

earth's magnetic field have been reviewed in detail some years 

ago (Elsaaser, 1950).  We shall confine ourselves here to a few 

words.  The earth has been shown from seismological observations 

to have a liquid core set off from its outer, solid part by a 

sharp surface of discontinuity.  The radius of the core is about 

3500 km, corresponding to 55$ of the earth's radius.  Geochemical 

evidence indicates that tho material constituting the core is 

primarily molten iron with perhaps an admixture of nickel and 

# 
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possibly some minor constituents In solution.  In order to apply 

hy&roaagnetic theory, to the earth's core it suffices to assume 

that the material is a good electrical conductor, its conductivity 

being comparable at least in order of magnitude to that of ordinary 

metals.  Beyond this it is merely necessary to assume that the 

core is fluid and that internal motions occur.  The geomagnetic 

secular variation puts the fluid character of the core in evi- 

dence. The secular variation may be analyzed into a spectrum 

whose prime components have periods of the order of a few hundred 

years.  There is no known way of accounting for periods of this 

order on the basis of mechanical* thermal or other processes 

occuring in the solid outer parts of the earth.whereas the theory 

which assumes this secular variation to be associated with fluid 

motions in the earth's core is able to explain them quite satis- 

factorily (Elsasser, 1950).  In the present review we shall not yet 

discuss these phenomena in detail (althougii they are well suited 

to compare the theory in a quantitative fashion with direct 

oboervations).  Instead, we shall focus our attention on the basic 

hydromagnetic processes by which the earth's dipole field is 

generated and maintained.  These processes are net necessarily 

the ones which are most directly revealed by tne secular variation^ 

they take place in tne deeper parts of the earth's core, whereas 

the geomagnetic secular variation may be shown to inform us only 

about the conditions in a very shallow layer of fluid adjacent 

to the surface of the core. 

The driving mechanism by which the fluid motion, and hence 

indirectly the magnetic field, is maintained is generally assumed 

to be thermal convection (Bullard, 1949) although convective 

.. _. . 
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motion induced by other means, in particular progressive sedi- 

mentation (Urey, 1952) need not be ^ejected.  In any event, the 

power supplied from thermal sources (radioactive heat in the core> 

plausible radial temperature gradients) is, even under very con- 

servative assumptions, more i/itui sufficient to maintain 

throughout the lifetime of the oarth fluid motions of the mag- 

nitude inferred from the observed secular variation (0.1-1 

mm/sec).  The details of t.he primary driving mechanism need not 
It 

concern us in this review* it will appear, however (Sec. 5) that 

the fluid motions.' must be essentially three-dimensional; a pattern 

restricted, e.g., to spherical sheets or to meridional planes is 

not adequate to produce dynamo action.  Recent seismological re- 

search (Bullen, 19 54) makes it likely that the central part of 

the core is again solid, but the volume of this inner, solid 

sphere is only a very small fraction or the entire volume cf the 

core, and for the purposes of the analysis given below it will 

be sufficient to assume the earth's core «<3 a homogeneous fluid 

sphere.  Compressibility effoots are not likely to be important 

and so the fliM dare may be considered as incompressible! moreover 

the electrical conductivity will be assumed constant. 

There is another class of extensively studied phenomena 

which can be attributed to hydromagnetic effects, namely, the mag- 

?| netic fields observed on the sun, particularly , in sunspots. 

Every sunspot has a magnetic flald associated with itf the larger 

the spots, the larger as a rule the fields.  The field strength 

in the larger spots goes up to a saturation value cf about 

3000 gauss with a margin of fl\ictuation of nearly + 1000 gauss.  Sun- 

spots appear very frequently in pa~rs, the line connecting the 

twe spots running in an east-westerly direction, along a circle 
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of latitude. The two members of a sunspot pair always have op- 

posite magnetic polarity.  The "leader" spot (the cue appearing a- 

head in the sense of the solar rotation) always has ono definite pol- 

arity during one and the same sunspot cycle, the '^follower* havirjg 

the opposite polarity.  The leader is in the average larger and has a 

larger magnetic field than the follower; single spots as a rule have 

the same magnetic polarity as the leader spots.  Sunspots appear and 

grow to their full size in the course of a few daysj they then gradu- 

ally decay during the course of a few creeks, some of them persisting 

over a few months.  The solar latitude at which the spots are Been is 

a function of the 11 l/2-year sunspot cycle.  In the beginning qf 

the cycle the spots appear at a latitude of about 30°.  As the sun- 

spot cycle progresses the spots appear at lower and lower latitudes 

until towards the end of the cycle they are found very near the solar 

equator, at latitudes of 5-10°.  At the same time new spots be^in to 

appear around the latitude of 30°, but these spots have opposite mag- 

netic polarities.  Curing the entire subsequent cycle the polarity of 

the spots is the opposite of that found in the previous cycle; for the 

next 11 l/2-year cycle the polarity reverses again, and so on.  Clearly 

the complete sunspot cycle must contain the reversal of the fields 

and extends over 23 years.  There are many other observations th,at 

indicate the presence of magnetic fields in the sun other than 

sunspot fields and the general character of these fields appears, 

to vary with the sunspot cycle, but these fields are very much 

3EU.ller in magnitude than che sunspot fields.  We may refer here 

to a very comprehensive recent work on the sun (Kuiper, ed, 1953)* 

Let us now return to our initial remark that magnetic 

fields in cosmic fluids may be produced by amplification from 
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small Initial fields.  We referred to turbulence as being able to 

generate such fields in a statistical manner*  Now while the earth's 

field is highly irregular in the detail"-- by far the largest part 

of the field has the form of a dipole roughly parallel to the 

earth's axi3.  The prominent feature of aolar magnetism is the 

23-year cycle which, while subject to fluctuations in strength 

and also to certain fluctuations in length, has been observed to 

occur with consistent regularity ovor the last 200 years, and there 

5s no reason to doubt that it is a relatively stable feature of 

solar activity.  Similarly, when stars are observed to have over- 

all fields of several thousand gau3s, a systematic cause must be 

operative.  It is clear that if the observed phenomena are to be 

explained by hydromagnetic amplification, some regularity of 

the pattern of fluid motion must underly them.  Fluid motions which 

produce relatively stationary or periodic magnetic fields will 

be designated as hydromagnetic dynamo3.  Since fluid motions in 

large dimensions are turbulent, cr at least more or l^ss Irregular, 

we shall not be concerned with rigorous solutions of the hydro- 

magnetic equations, but with typical solutions which demonstrate 

the stability of the fields in the mean.  This point of view is 

ir. full agreement with the observations which show that none of 

the observed parameters of the field 13 rigorously constant! 

all of them are subject to certain rather appreciable margins 

of fluctuations.  As an example of this we may mention that the 

earth's dipole moment ha3     decreased by about 5%  since 1850 

(Elsasser, 1950) although other observational data leave no doubt 

that the earth must have possessed a magnetic dipole moment for a 

very long time indeed, so that the present decline is in all 
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likelihood only a temporary .fluctuation.  A disregard of these 

pronouncedly ii-regular fluctuations of the field has led to the 

so-called "fundamental1' theories which try to relate geomagnetism 

and other cosmic magnetic phenomena to properties of matter 3n 

the large not contained In the conventional equations ox classical 

physics.  The hydromagnetic theory shows that classical physics 

can account for these phenomena, but that the particular para- 

meters or combination of parameters have, for good and sufficient 

reason, escaped observation in the laboratory (Sec. 2). 

The dynamo theory requires that the fluid motions exhibit 

certain regularities in order that magnetic fiolds .nay be main- 

tained in the average.  In other words, there must be some order- 

ing principle that controls the fluid motions, and we must identify 

this principle.  One's first idea would seem to be a search for 

arguments of symmetry:  to find some symmetry requirement that 

restricts the generality of the fluid motions and impresses upon 

them a relatively simple pattern.  But such a search proves to be 

in vain*  There is every indication that an appreciable degree 

of symmetry of the fluid motions will suppress or cancel the 

effects of hydromagnetic amplification (Sec. 5)j thus we are 

led to look for patterns of the fluid motion of a low rather than 

a high degree of symmetry.  To make a long story short, the order- 

ing principle which engenders the moBt conspicuous hydromagnetic 

effects may be identified a« the Coriolis force acting upon the 

fluid motions in a rotating system.  Such is the working hypothesis 

of this paper.  The Coriolis deflection affects the fluid motions 

in such a fashion that the resulting pattern does not in general 

admit of any symmetry operations.  Stationary or periodic 
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hydromagnetic amplification Is thus related to the rotation of 

the fluid mass in which It occurs.  There is some observational 

presumption in favor of this idea, since the star.c> with strong 

magnetic fields seam to rotate rather rapidly.  The evidence is, 

however, not entirely conclusive and the assumption must be jus- 

tified by working out its dynamical consequencesj we might remark 

that we are not informed of any other dynamical principle which 

could be adduced to explain magnetic fields of the type observed. 

• •- - 
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2.     Field Equations,,  Dimensions. 

We  shall use  the rationalized, rsks  system throughout*     The 

*    * electromagnetic  fields will be  assumed to obey Maxwell's  equations, 

hence the material medium may at any point be described by the 

three  constants   <p,   }*.£,.    We uhall  assume  u- and   g    as  constant 

throughout  space   and  shall for  simplicity assume   <j-  constant  for a 

given fluid,   although  it would not bs  difficult  to  generalize  the 

theorv to  fluids with variable   <r.    We  then have 

I V x E -  -3B/8t  ,      V«  E = r\/l (2.1) 

V«£*0 ,       \7x£=n£ (2.2) 

where   Y) ,   J are   charge   and  current  density.     Next we write  down 

the most general  expression for  the  current density admissible  in 

Maxwell' s  theory, 

* _J =<TE + <rv x B +  c9E/at +   \v (2.3) 

where v is the material velocity of the fluid and wher6 the terms 

on the right represent, respectively, the conduction current, the 

induction current, the displacement current, and the convection 

current.  Formula (2.3) differs from the conventional expression 

for the tote.1 current by the second and fourth terms on the right 

which contain the fluid velocity, v.  For the derailed derivation 

of these terms any extensive text on electrodynamics may be 

consulted. 

We shall now proceed to show that the last two terms of 

(2*3) are negligibly small under the conditions met with in cosmic 

fluids.  We shall use braces, (   ] , to designate the order of 

magnitude of a given physical quantity? let in particular \*} 
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stand for  a typical  length and io> ]    for a typical reciprocal  time. 

We first note  that 

{v/c J    •=   r P j   «    1 (2.4) 

sijjn;e   the  velocities  of  cosmic fluids  rarely exceed  a few km/sec. 

We now  compare  the  displacement current*   the' third  term on the 

right-hand  side  of   (2.5),   to  the  conduction current,   the first 

term.     The ratio   is 

(wd/ir}   =    frj (2.5) 

"where    j   is  exceedingly small.    To shew  this,   let <T   = 10",   the 
18 conductivity of  ordinary ironj   then for   V = 1 we find coss-lO 

This  shows  that  for-  the frequencies  of  all macroscopic motions 

X   is utterly negligible.     (The  quantity  (2.5)   is  familiar  to  the 

student of metal optics where  it  is used  in the  same way as here, 

» namely,  to measure the  ratio of displacement to conduction current.) 

It  is  readily  shown  that  the ratio  of  convection current   to  con- 

auction current  is also given "by (2.5)*    ^rom (2«1)  re have   indeed 

l ^ )      =    {tEA} 9  hence  this  ratio  is 

{^v/crE)   =    {£v/b-x}    =   {r\ (2.6) 
i 

if we  identify w = v/X  as   a typical  frequency of  the material 

j motion of the fluid. 

I 
We next find for  the ratio of the  electrical  to  the 

magnetic field energy,  using (2.1) 

{OP/VTW)    =    ^/c2B2}    =    (xV/c2j     =   [f] (2.7) 

if we  again identify Xa> with the  velocity of  the fluid,   as  is 

proper  in an  entirely Kaxwellian  scheme.     Hence  the  electrostatic 

field energy  is   small   and  it follows  from familiar arguments  that 

in our  approximation  all  electromagnetic  processes   are   aperiodic. 

i 
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These estimates call for some further comments. We see 

from the numerical estimate of Y   that even for a moderately ion- 

ized gas the electromagnetic phenomena are aperiodic for frequencies 

in the radio spectrum*  TfrUs plasma oscillations at these fre- 

quencies require that the description in terms of the macroscopic 

equations of Maxwell's theory be invalid} this is because (2*7) 

becomes invalid for the velocity of the electronic component of 

the plasma.  In the present article we are dealing, however, only 

with the macroscopic, average motions of the conducting material) 

the characteristic frequencies are then lower by many powers of 

ten than the frequencies of the radio spectrumj hence (2.5), 

(2.6) and (2.7) are certainly small and our approximation may safely 

be applied.  Now (2.2) and (2.3) give 

V x-  B = LtcrE + ucrv x B (2.3) 

Continuing our dimensional analysis (Elsasser, 1954) we 

compare the order of magnitude of the thre*» terms in (2.8).  We 

first notice that by virtue of (2,7) the two terms on the right 

hand side are of comparable order of magnitude,  ~he ratio of any- 

one of these terms to the net current on the left is 

^Avj = [Rm\ (2.9) 

where  tne  non-dimensional   quantity R    will  be  designated  as   the 

wiacmft-hl c. Reynolds  number.      If we   substitute  numerical  values  for 

the  quantities  on  the   left  of   (2.9)   we  find  that R     is numerically m 
large for cosmic fluids.  It is of the order of magnitude of sev- 

eral hundred to pa?haps a thousand for- the earth's metallic core, 
5 

depending on the detailed assumptions made, and is of order 10 

or more for most astrophysicai conditions.  This constitutes the 

. _    __. 
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i»jssential difference of cosmic hydromagnetisra from laboratory con- 

ditions  where?   as  one   readily  verifies,   R     is  numerically  small. j     . 
I Ksnce 
i 2  ^/ -v x B (2.10) 

I 
quite  at  variance  from the  conventional   situation where  the  net 

current   is  the   source  of J3. 

Operating with the  curl  on  (2.8)   and using  the  field 

equations we  eliminate E and find 

3B/3t =   X7x   (v x B)   +  v„V2B (2.11) 

where we have written 

v    =  (n<r)_1 (2.12) m 

The quantity v will be designated as the magnetic viscosity. 

We see from (2.9) that R  differs from the conventional hydro- m J 

dynamic Reynolds number, R, only in that v replaces the kine- 

The physical implications of (2.11) are best brought out 

in terms of an integral equation.  To obtain it we integrate (2.1) 

along a contour C and use (2.8)} then by wtokes' tneorem 

(S/StJ/E^dfi" = -/§_ • dC_ 

• /(V^ x Bj • dC_ - Vn/t^7 « J.) • dC_ 

Now  if  the  first  integrand  on the right-hand  side   la written 

J3_ •   (dC.x jr),  the   integral  can  be  given  a simple  geometrical 

meaning?     it becomes   ~/3 d<T"    where   the   integration  extends  over 

the  strip  that  the   contour C   subtends   in  its motion during  the 

time  dt.     Since /B  df    =0 for  any  closed  surface,   we   can write 

• 
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thls 

{d/dt )J^y6w   = -v^^ x B) • d£ (2.13) 

On the left there appears now the substantial derivative, refer- 
I . 
j ring to motion with the fluid particlea.  Clearly, if (2,13) is 
I 

I applied to  any arbitrary contour,   it  is  equivalent  to the dif- 

ferential equation  (2*11)- 

Next  take  the ratio  of  the  left-hand  side  of   (2.13)  to 

the right-hand  side.     This  ratio  is  readily  sson  from  (2.12)   and 

(2.9)  to be  just ( R_{.     Hence under geophysical  and  astrophysical 
i m.) 

conditions we have very approximately 

(d/dt)^nd(T =0 (2.14) 

which is usually enunciated by stating that the magnetic lines of 

force are carried along bodily with the fluid$ they are "frozen" 

as it were, in the conducting fluid.  On applying a well-known 

vector identity to the first term on the right of (2.11) we 

obtain the differential equation in the form 

dB/dt = (B • V)v - B(V  • v) • vJS^B 

which may be further simplified on introducing from the equation 

of continuity 

V. v =/ d^^J/dt 

with the result 

d(f _1B)/dt = (S"1^  • V)v  + f_1v V2B       (2.15) 

an equation that exhibits more clearly the role of compressibility 

(Truesdell, 1950). 

This equation is remarkable in that it shows a complete 

formal analogy to the fielmholtz theors• of the conservation of 

vorticity.  Indeed- if we replace B by the vorticity vector and 

_ 
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V by v> (2.15) becomes lust the general vortioity-conservation m w       w 

theorem.  j-he physical implications of this result for the tubes 

of vorticity. which now may be transferred at once to the tubes of 

magnetic flux, are well enough known and may bo found in almost 

any text on hydrodynamics.  There is one point, however, where a 

great deal of misunderstanding appears to exist in the literature: 

One» has become habituated to saying that not only must flux be 

conserved during the motion (for vanishing v or v ; but that aiso 

the lines of vorticity or of the magnetic field must be closed 

in the absence of sources.  Prom the existing discussions one is 

often led to the implicit belief that the condition V •^ * 0 

requires that the magnetic lines of force must be closed curves. 

This statement is certainly incorrect.  The subject has recently 

bean studied in some detail by McDonald (1954).  He shows that 

there are two conditions under which the field lines are not 
I 
I -        closed-  In the first place they can terminate in singularities 

that is point3, lines, or surfaces where j3 = 0.  Examples of or- 

dinary current configurations where such singularities appear can 

be constructed in abundancej similarly such singularities may be 

present in problems.of hydromagnetism.  A second class of non- 

closed iine3 is that of lines which are "ergodic", that Is cover 

a region everywhere densely.  As an example for the latter, con- 

sider a current 3ystem consisting of a straight current-carrying 

wire and a second wire forming a circular loop which lies in a 

plane normal to the straight wir6 with its center on the latter. 

The lines of force in the neighborhood of the loop are clearly 

spirals} a line going through a given point will be closed utily 

when the ratio of the currents flowing in the two wires has 

.. ._-. - . . .-     _ -» 
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eertain rational values, otherwise the line will fill a torus- 

shaped surface everywhere densely.  It cannot be our aim to con- 

sider in detail these scwewhat involved properties of field lines 

which pertain to analytical vector geometry and are of more in- 

terest perhaps to the topologist than to the physicist* One may 

readily perceive, even without delving into more rigorous mathe- 

matics, that the closed lines of fores form, set-theoretically 

speaking, only a subset of measure aero of the set of all possible 

field lines. 

One thing stands out clearly*  * Intuitive" arguments 

regarding the existence of closed lines of force and the impos- 

sibility of generating new closed lines by deformation of the 

fluid are of no /slue. They cannot be used as arguments in a 

discussion of hydr©magnetic amplification unless they can be 

converted into formulas based on the vector-field equations of the 

theory. Much unjustified scepticism against the reality of hydro- 

magnetic processes has arisen from such intuitive reasoning.  It 

can be avoided only on abandoning the line-of-force concept of 

elementary textbooks in favor of the theory, at the same time more 

rigorous and more simple, of vector densities or fluxes, which is 

Implied by the field equations. 

Returning now to the equation (2.11) we see readily that 

the ratio of the first to the second term on the right-hand side 

is again /R ]• This is completely analogous to conventional 
C   m j 

hydrodynamics  where   the ratio  of  the  dynamical to  the  frictional 

terms  is |flj-     There  is  *:his difference  in practice,  namely,  that 

we  can on occasion realize fairly high values  of R  in   the   laborator*y, 

whereas  with conventional materials R    remains m 

--         ... 
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small;  hence while we  are familiar with turbulence,  we are not well 

acquainted with the  type  of phenoiuaiia characteristic  of  cosmic 

hydromagnetism.     Noting  that  (2.11)  has the  dimension $  coB \   we 
V. J 

'wi*ite   Lhe   x-aLio   uf   the   two   terms   on  the  right 

{ 
•O        1       - ( „ A ,,   . "» - (- M ) (2.16) mj    "    \ll/AWdL)    "     ^v7   cij 

where tod  is  a characteristic frequency of  the free  decay of  the 

field  in tho  absence  of motion  and w    is  characteristic  of  the v 

fluid motions. We see here tne physical basis of a dynamo theory: 

for sufficiently large R^ the magnetic field can be deformed 

(amplified) by the fluid motion before it has had time to decay. 

It remains for the dynamo theory to show that the deformation can 

occur in a sufficiently ordered fashion so that a mean magnetic 

field can survive. 

Next, consider the mechanical motion of the fluid,  from 

conventional electromagnetic theory we have for the density of the 

ponderomotive force of the magnetic field 

J? « J x J3 = \i  x( \7 x B>) x B_ 

The corresponding forces of the electrostatic field are 

(2.17) 

small by the   same   arguments   as before. The force  (2.17) will  appear 

in the  Stokes-Navier equations for the  fluid motion.     Using  the 

well-known vector  identity 

(V XBJ  x B =  (B   •   \7)B  - £\7(B2) (2,18) 

we shall write these equations in the form 

ov/3t + (v . V7)v = -T7ty + (fji)"1^ • V)B * \>V2j,  (2.19) 

where we have set 

S<y  = p + u + (2ji)"
1Bf (2.20) 
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"Q being the gravitational potential.  The equations (2.11) and 

(2.19) together with ouch subsidiary conditions as an equation of 

state, determine the dynamics of a cosmic fluid In which magnetic 

fields are present. 

In the case of incompressibility, V • _v_ = 0, this system 

admits of a remarkable symmetrizntion which puts in evidence the 

analogous roles of B^ and v_  In the theory.  Letting 
i l     . 

P = v + (f n)"^B ,  d = v - (J|i) H3 

2v, = v + v x       m , 2v2 - v - vm 

we obtain,  on  adding or subtracting  (2,11)   and  (2.19) 

dP/»t +  (Q • \7)P * - W + V2(v-,P + V0ft) 

e$/at + (p_ • \7)o_= -W> + ^72(v1§_+ v^) 

where now (2.20) becomes 

vf = f-^p + u) + (x- 5,)2/s 

(2,21) 

(2.22) 

These equations were derived by Lundquisb (1952) Independently of 

the author (1950a).  The symmetry of these equations mieii'>; be 

somewhat misleading:  thus we notice that v? becomes negative when 

electromagnetic dissipation outweighs fractional dissipation, a 

fact that ha3 no analog in ordinary hydrodynamics.  The ratio 

v/vm = Rm/R = ptr v (2.23) 

may be estimated from elementary kinetic theory for an ionized 

gas such as hydrogen (Elsasser, 1954).  One finds the numerical 

value 

u.<r v = 8? 10 d/f 

where o is the degree of ionlzation, / the density in mks units. 

This shows that electromagnetic dissipation outweigns frictional 
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loss in the interior of the stars where f    is moderately large, 

whereas in the rarefied intragalactic medium, and also in regions 

such as the solar chromosphere or corona the electromagnetic loss 

We next turn to the conservation laws.  It may readily be 

shown that neither energy nor vorticity is conserved for the fluid 

motion alone.  The wor>: done by the fluid is just the negative of 

S the ??ork done by the ponderomotive force (2,17).  The power del- 
s ivered per unit volume is thus 

-V • P • n_1v x J3 • (V xJJ) (2.24) 

We may of course obtain the same expression from the magnetic 

field equations.  On scalar multiplication of (2.11) with B and 

transformation of the first term on the right by a well-known 

vector identity we have, neglecting dissipation 

(2ji}"
1aB2/3t = V-^V ' L.(JX$.)X£.J  

+ M>"1(vxB) • Vxg  (2,25) 

On integrating over a volume, the first term may be cor*7erted into 

a surface integral and can be made to vanish if the surface is 

extended to a region where v = 0 (this term represents essentially 

the Poyntlng flux, as may be seen by substituting (2.10)).  The 

last term of (2.25) is identical with (2.24). 

The curl of P does not in general vanish and so there is 

transfer of vorticity between the fluid and the field.  This is 

most conveniently expressed in terms of the Kelvin circulation 

theorem of hydrodynamics.  Integrating (2.19) along a closed 

contour and again leaving out the frictional term we obtain 

<L_ >». „ ,„ = , -i 

I 

I 

i 
, (2.26) 

= H AV  x B) x B • dC_ 

.-   <- nmrM..     •—.*= •   •  - 
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It is difficult to simplify the right-hand 3ide further, "out we 

shall not be required in the sequel to make explicit use of the 

theorem-  While all the oi>ecsdin<T integral theorems fere of some 

interest- the one most significant in practice is the conservation 

of magnetic flux in the limit of small dissipation, given by 

(2.14). We shall make ample U3e of it later in the application 

to the dynamo theories* fcr further analysis and illustrative 

examples we may also refer the reader to a comprehensive treatment by 

Lundquist (1952). 

It is possible to derive the field vectors from a vector 

potential, though the relationships are slightly different from 

those of more conventional electrodynamics.  If we set. as usual 

B,
8
^^* £.= -aA/at (2.27) 

the  first  equations   (2.1)   and  (2.2)   are   identically fulfilled. 

The   second  of   (2.2)   or,   rather.   (2-8)  gives 

aV5t = v x (S7   x j&)  + v^V2^ (2.28) 

We cannot, however, set V • Jk. = 0» since the divergence of the 

first term on the right of (2.28) does not vanish (see Sec. 3). 

We now assume H large and neglect terms of order R  . The m m 

last term of (2.28) being of this order, we find 

B/dt(V • Jj  = V.[iX(7xA)l (2.29) 

By virtue of (2.10) which also holds apart from terms of order 

R^"1, (2.29) is identically fulfilled.  Finally, \   is deter- 

mined from the second of (2.1).  Thus the assumptions (2.27) are 

Justified in the approximation in which electromagnetic dissi- 

pation may be neg]e cted. 

In most applications it is possible to ignore the 
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longitudinal ( irrotational) part of J&,   and hence of A, alto- 

gether, since by the first of (2.1) it does not give rise to a 

magnetic field.  If a method i3 given whereby A may be split 

longitudinal part (e.g. on using a system of normal modes. Sec. 4) 

we may re-introduce the condition S7*  \_= 0 to supplement (2,27). 

Since, however*, the divergence of the first term on the right of 

(2.28) does not in general vanish vsee e^u. 3.C>/ ws must thon 

supplement (2.28) by the condition that only Its bransverse com- 

ponent will be taken into account.  Since the decomposition of a 

vector into its transverse and longitudinal parts is linear, this 

can often be done with comparative ease. 

In the applications to astrophysical pro-        -I 

blems both &  and R  are numerically large.  This means not only 

that we have turbulence but also that there will be an entire 

hierarchy of eddies, the larger eddies feeding energy into the 

smaller ones, according to the usual turbulence theory.  The 

largest eddies correspond to the largest values of R possible, 

the smallest eddies correspond to either R •"—* 1. or R_^-' 1, m 

depending on whichever one of these two numbers is the larger. 

If there is intense transfer of energy between the mechanical and ei- 

6ctraa«gnetic degrees- of freedom, at least among the smaller eddies 

(Batchelor, 1950) the cutoff of tne turbulence spectrum must be 

determined by whatever mechanism of molecular dissipation is the 

more effective, mechanical friction or Joule's heat. 

In a turbulent fluid the transport of physical properties 

such as heat content, momentum, vorticity, and so on, is deter- 

mined by the corresponding molecular coefficientsj the same 
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applles to thermal dissipation.  Thus we shall be forced to replace 

v_ by an eddy raagn9tic viscosity, v ' say, or else <r by an eddy 

electric conductivity, tf5* .  It is well known, of course, that 

these quant it las ar»fi actually functions of the turbulent s?.tsfcs# 

To exhibit more foimally the magnetic eddy stresses and 

the magnetic eddy diffusivity, we remember that purely mechanical 

stresses can be expressed as the divergence of a stress tensor 

(sso for- instance Sommer-feld, 1950).  We shall assume in the re- 

mainder of this section that the fluid is incompressible *  Ws 

shall use ter.sor notation in cartesian coordinates.  The mole- 

cular viscous stresses are the divergence of the tensor, 

v(8v4/d.T:, + 3v, /dx.).  Again, in a turbulent medium we have the 

Reynolds stresses which are derived as follows:  The Euler 

equations of the fluid are 

Now on account of incompressibility we have 

» ~_» 9v        —_ 3v,       dv. 

We now set 

v. = v.° + v7*~~ (2.311 
j.   i    i v 

where v° refers to the "smooth" and v to the "turbulent" com- 

ponent of the velocity.  We choose the decomposition (2.31) so 

that^ on averaging over the irregular motion vT1" = 0, hence 

v^ = \±  ,   and 

v^v" = v °v ° + v dv *" = v °v ° - S 
Ik  vi vk + vi vk   vi vk   aik 

where S^ is the Reynolds stress tensor.  If we insert (2»31) 

L ll»    Illl I I     _.. -  .•••'•I   ....... 
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into  (?.30)   and  average we  obtain 

TFT ¥ o   i 

^F 
rk 5Z ^k    k 

^ik 
s*k~ 

Now the ponderomotive force (2.17) may be expressed as 

the divergence of a Maxwellian stress tensor (see for instance 

Stratton, 1941).  Referring to unit mass, this relation is 

r\ - Z 1        k 57s» Tik =r5(BiBk -B 6ik' 

where ^,, is the usual Kronecker symbol.  We now split B, into 

B± = B1° • B* (2.S3) 

where the same conditions for the averages hold as for (2.31). 

The equations of motion become 

av, 
at >  v, o*V 

k k **k axi . ^ k  k  ^*k 

i 

*Z, ^slk • xtt) (2.34) 

where in place of (2.20) we have now f^1-  p + U, the term wi. th 
2 J3 having been absorbed into the stresses.  We see that the mech- 

anical stresses produced by the turbulent component cf the magnetic 

field are exactly analogous to the purely mechanical stresses of 

turbulence. 

A similar transformation may ~e effected for the magnetic 

field equations (2.11).  We note in the first place that 

rx (^xs)]is 21 dh'viBk - Vi) (2.35) 

The parenthesis on the right represents an antisymmetrical 

tensor (it being well known that any vectorial product may be written 

. 
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as such a tensor).  This feature distinguishes the field equations 

(2.11) essentially from the equations of motion in which the stress 

tensors, mechanical as well as electromagnetic, are symmetrical. 

We introduce now the decompositions (2.31) and (2.33) and let 

TlBk " V3?i = Vi°3k° " W + Xlk 

where I is the antisymmetrical turbulent induction tensor.  Now 

(2.11) becomes, on omitting the term in v 

¥ • T- lr«'iV - »*V>• £ Sr     (2-36> 
where the last term now describes the turbulent diffusion of the 

magnetic field.  It must be emphasized that in spite of the super- 

ficial similarity to the last term in (2.34) there is the funda- 

mental difference that the induction tensor is antisymmetrical. 

In any one situation we can reverse the sense of energy transfer 

between fluid and field by merely reversing the d'^eeticn cf jr, as 

is apparent from (2.24).  Similarly, the sign of the components of 

I depends on correlations between the components of v and of B_ 

and the sign of these correlations may be reversed in the same way. 

Whereas the stress tensors S and T in (2.11) act In a way quite 

analogous to molecular viscous stresses, giving rise to irrever- 

sible effects only, this cannot be said of the tensor It     the 

classical proof of the irreversiblity of viscous stresses depends 

on the symmetry of the stress tensor.  For stationary isotropic 

turbulence only the diagonal slemsnts of the tensors remain, so 

that I vanishes In this case.  This of course does not mean that 

there is no transfer, but that the transfers in the opposite 

direction balance.  We can, however, have a systematic transfer, 

I 
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and of either sign, if the turbulent pattern is sufficiently an- 

isotropic.  This question is closely related to that of eddies 

producing feedback in dynamo models which we shall take up In 

Sec. 7. 

We may inquire into the comparative magnitude of the 

tensor3 S, T, I.  A number of authors on astrophysical electro- 

dynamics have assumed that equipartition holds for the energy, at 

least; in •-•rder of magnitude: 

ffv2] = (W ) (2,37) 

In this case it is readily seen from (2.32) that (Tj = £v2j = (s {. 

The magnitude of I is related to the R  of the effective eddies in m 

the ssmo way in which S and T are related to S.  As Batcholor (1350) 

points out, the largest eddies are driven mechanically and their 

energy is degraded before they can create an equilibrium magnetic 

field of their own dimensions* and of magnitude (2.37 )j for the 

eddies of smaller dimensions but above cutoff we may assume such 

equilibrium to prevail* We would then be able to estimate that the 

ratio of the eddy-stress and eddy-diffusion terms to the dynamical 

terms is of comparable order in (2,34) and (2.36).  There is, how- 

ever, no ba3ic need to assume that the equipartition (2.37) holds 

even approximately in a rotating system.  A turbulent regime is 

not a statistical equi]ibrium but a dissipative process, at the 

best a stationary one.  For an equilibrium the existence of detailed 

balancing is a sufficient (though not always a necessary) condition 

for equipartition.  For non-equilibria the deviations from the 

equilibrium statistical distribution (equipartition) are larger, 

the more the system deviates from detailed baiarcing.  In a rotating 

system the Goriolis force lacks mechanical reciprocity and hence 

       .   . 
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the system would not even permit of detailed balancing in a 

hypothetical equilibrium.  Since the Coriolis force id essential 

for the dynjsao mechanism which maintain* the magnetic fields, it 

is preferable not to have recourse to the equipartition assumption 

(2.37) but to tackle the problem from basic dynamical principles, 

which is wnat we snail do later on* 

• 
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3,  Electric Fields, Potentials. 

• 

We shall now Investigate more closely the range of validity 

of* our equations.  The electromagnetic field equations used wore 

those of the conventional Maxwellian electrodynamics of ponderable 

bodies.  There are certain observed cosmic phenomena which cannot 

be described on this basis, in particular radio noise and the 

acceleration of cosmic rays, but outside of these there exists a 

strong presumption that these macroscopic laws should hold for 

the slow motions and the large dimensions of th* fluids considered. 

A3 before, we shall assume that P is numerically small and R nura- 

srlcally large.  A question which immediately posss itself is that 

I 
1 

of the magnitude of the electrical effects associated with hydro- I 
S 
1  .        magnetic phenomena, end this will now be considered. 

| It is well known that the electromagnetic field equations 

I  *        of ponderable bodies can be written in a relatlvistically invariant 

form (Minkowski's equations, see Von Laue, 1921)  Here, however, we 

need only consider the terms linear in P and may neglect all higher- 

order terms in the Lorentz transformation.  The kinematical equations 

of the Lorentz transformation reduce to the simple form 

r' = r - v t.   tT - t,   v' = S7,   a/at8 = a/a + v^ • ^   (3.:) 

whereby     is  the   velocity  of   the  primed   system with respect  to  the 

unprimed one  and  r  the  radius  vector from  the  origin. 

In  the  same   approximation the  field  vectors   transform  as 

t 
E    = B' •*• v    x B * B'   = B  - v    x B/cJ 

M, Introducing here the assumption that R  is large which may be 

expressed by (2.10) we have 
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is 

provided v.   and j_ are  of  comparable  order.     Hence   the  transformatic: 

reduces  to 

E1   = E +  yrt x  B   ,     B'   =  B (5.2) 

ihe  current density transforms  t»o  J    = J T    »/ v_.     ixxncs 

{*V0/<TBJ = fr} and  (VE/j} = (Rm} 

by  the preceding  section,  we   see   that   h v     is   small  of  order iTR  • («* o m 

Now    r i3   so  exceedingly  small  that  this  product   is   small for  all 

x»en.snnohli3  values  of R  *  hence 

jr1 = JL ,   ^ ' =  <u{ (3.3) 

the   second equation following  from general   principles  of  relativity. 

Purthermore.   the  conductivity,    C~ ,   can be   shown  to be   a Lorentz 

invariant  from general   thermodynamical  considerations (\fcn Laue, 2921) * 

It  is  at  once   seen now  that  all  the  equations  containing B, alone 

will  not  change under the transformations   considered,   nor will  the 

ponderomotive  force   (2.24). 

We next   inquire   into   the   space-charge, V)   .     Vita must have 

conservation  of   charge  which,   on using  the full   expression  (2.3), 

may be written 

- §?"   V '   (&-   £•  ||) =f n +    <rS7.   (v x B) + V .   (^v) 

The   last  term  is   small   and may  be  neglected,   and  we   are  left with 

a differential  equation for  t) 

\  +  (er /£) *2     =    <r f(t) (3.4) 

where 

-f(t) = P7.(vxB) = v»VrxB-B.Vxv    (3.5) 

does not in general vanish.  The integral of (3.4) is 

. » . -• -. •wn i  -    . -.._.- 



n (t)  =  exp(-o"t/£) / dt f(t)exp(,r t/c) 
o 

Now  the rate  of change  or f  is  determined by the  frequencies,  », 

of  the  fluid motion,   and  cr/£     =   fta  << w.     On letting  therefore 

T(D)   =  f(o)   +  tf'(o)   the   solution becomes,   to  within  term3  of  the 

order of  Y, 

>l  (t)  =     £  f(o)  +   £ tf'(o) 

It-s meaning  is  apparent::     the   space  charge   is 

V>   =  -^C7.   (v x B) (3.6) 

and as the parenthesis on the right changes with time, y>   follows 

this change quasistatically to within terms of the order of )f , 

that is synchronously to all practical purposes. 

While thus hydromagnetic induction does in general produce 

a space charge in the conductor, (2,1) shows that the associated, 

longitudinal, part of the field does not affect the rate of change 

ox B»  «»ibh a proper choice of the constants of integration we can 

say that the longitudinal component of Jl, whose sources are ^ , is 

tint, accompanied by a magnetic field, a familiar result of conven- 

tional electrodynamics.  Now we have aeen before that the electrical 

energy density is small compared to the magnetic one, and similarly 

for the ponderomotive forces,  ^or this reason we are not, in 

general, interested in the electric fields as such when dealing 

with problems of hydromagnetic theory.  These fields become ox 

physical interest only If perchance it can be shown that somewhere 

In the universe they give rise to the acceleration of elementary 

particles, a topic which is somewhat beyond the confines of our 

present subject.  Thus it is altogether legitimate to ignore in 

the sequel the longitudinal component of „§, even though it is of 

the same order of magnitude as the transverse component.  If we 

. 

i 

1 
.  . 



Introduce a vector potential we may correspondingly set v7* A ~ 0* 

as we have explained in Sec 3, although this divergence is by no 

means small compared to \7  xj^. 

Cosmic matter is practically never an insulator in which 

static charges could be maintained over an appreciable length 

of time (the case of the formation of atmospheric thunderstorms 

by electrostatic effects being a notable exception)j hence there 

will be no static charges other- than those given by (3.6).  It may 

be convenient to introduce static charges for mathematical reasons, 

e.g., at the boundary of a conductor against vacuum. 

It is seen, then, that JJ. has both a divergence-free and an 

irrotational component} the former is given by the first equation 

(2.1), the latter oan be expressed by (3.5) and the relation 

2^= -X x S~ (3.7) 

which holds to within terms of the order of R " .  Both com- 

ponents are as a rule of comparable order of magnitude.  In deal- 

ing with problems of hydromagnetism, especially the dynamo theory, 

it is as a rule more convenient to work with equations that con- 

tain J3. al one, so that questions concerning the electric field 

become irrelevant, especially since the ponderomotive force of 

the electric field or the eieetris stress tsnsorsare by (2.7) neg = 

ligibly small as compared with the corresponding magnetic quanti- 

ties *  In the hydrcmagnetic phenomena of rarefied gases the electric 

fields generated may become Important for the acceleration of 

individual particles (cosmic rays), but these problems are not 

within the scope of the present review. 

There is, however, one point that might be touched upon, 

namely the conception advanced by several authors, that the 

* . 
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conditions for the acceleration of particles from thermal* or in 

any event small, energies to higher energies are particularly 

favorable at so-called "neutral points".  These points are defined 

so that JB = 0 in the local frame of reference, that is, in a system 

of reference in which jv = 0.  It is correctly argued that in such 

a system the particles move in straight lines and that hence the 

conditions for setting up an electrical discharge are much more 

favorable than elsewhere where a discharge is quenched by the 

magnetic field (spiralling of the particles which effectively 

•-.^.A-,***     t-^«<«     — ~,     fS»a<a     ~„4-V,      «1 />«»     ff\ HT/v-lf      -1 •P    S A a a 1 nn o *• a g     -l-Vio X   OUUVOO      U11U11        MiC Oil      XA*^«>      ^/auli       CtJ- VllQ     gm i   . i» v««        J-J.       — Ll^ *5 J.(*3»*W *» w ~        WAAW 

mean field at a neutral point and E the mean field in the fluid, 

we see from (2.10) that E  is small, specifically 

(Eoj = {E/Rmi = CvB/Rm} (3*8) 

Since under most astrophysical conditions H  is quite large, the 

theory of discharges at neutral points (Dungey, 1953) which at 

first sight is very attractive, needs a thorough revision in the 

light of this last result• 

Previous to the development of hydromagnetic theory with 

its amplificatory mechanisms, the possibility of molecular electro- 

motive forces as a cause of the large-scale electromagnetic fields 

has often been investigated.  Thermoelectric potentials, poten- 

tials caused by pressure differences along a material boundary, and 

potentials caused by differential diffusion of negative and posi- 

tive ions in a density gradient are typical of the mechanisms 

invoked.  These theories (the writer pleads guilty to having once 

advanced one) have all had this in commons  they use Ohm's law, 

J - cF, in place of (2.8) to compute the currents.  Now if we 

replaoe the first equation (2.1) by 

. 
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3B/9t  =   - \7x   (E + B. ) 

where J5,   is the   Impressed eral',   our  equation   (2.11)  becomes 

3j/8t =  -\7 x   (v x B)   +  vm^
2B. -   V x Ei (3.9 ) 

Iri a tur-bulent medium the molecular magnetic diffusivity must bo 

replaced by the eddy diffusivity which is very much larger; roughly, 

fv ')=/Rv ) (3.10} \   m / {  m m / 

By (2.12) this means that the conductivity is increased], or the 

resistivity decreased.  This reduces the magnitude of the fields 

generated, both by the first and by the last term on the right of 

(3.9). Since, however, the existence of turbulence requires that 

there are large-scale motions on which the turbulence feeds, the 

first term on the rigir; gives rise to large-scale hydromagnetic 

induction which is reduced but not iu general wiped out by the 

turbulence, as we shall see in detail later,  l'he effect of im- 

pressed emf's is different;  the stationary current and the 

stationary magnetic field are established more rapidly when v 

is larger, but the field produced by the saturation current is 

reduced in magnitude.  Prom the last two terms of (3.9) the 

field correspending to the stationary state is of the order 

{Bi) = {*Ei</vm} (3'X1> 
and according to   (3.10)   this field  is   smaller by a  factor     R ° m 

under turbulent conditions, ^he  theories referred to above have 

had great difficulties in accounting for an E. of sufficient mag- 

nitude to explain the observed fields, and these difficulties are 

multiplied if the turbulent resistivity is introduced.  Most mag- 

netic fields of large dimensions must be explained by dynamo action. 
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that i3 by hydromagnstic processes in which the field has been 

regenerated many times over.  There is empirical evidence for this 

in the fact that almost all, if not all, stellar magnetic fields 

are time-dependent (Babcock and Cowling, 1953)*  Theoretically, 

we must say that the long decay periods for magnetic fields in 

stars, comparable to the age of the universe, which are computed 

in the basis of the molecular v  (Cowling, 1945) must be reduced 

by a factor I  R_ | which, in stars, is likely to amount to a high 

power of ten. Clearly, for a dynamo theory the way in which the 

magnetic field originated at the occasion of the first amplifi- 

catory processes becomes rather irrelevant as compared to the 

mechanism by which fields can be regenerated and maintained. 
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4.  Free Aperiodic Modes. 

The integration of the basic equation (2.11) is difficult 

even with a relatively simple geometry. We shall proceed to 

integrate two special cases:  the case v = 0, representing free 

decay of a current system, essentially in a solid conductor, and 

the case v ~ 0 representing pure hydromagnetic induction.  In 

this section we treat free decay? from (2.11) and (2.12) we 

now specialize to. 

V2J. - ficr^B/dt = 0 v4-^) 

To  solve  this  equation we use   the method of normal modes   adapted 

to   the   aperiodic   case   (Elsasser,   1946/7)  which differs   in  a number 

of particulars from the  case  of  electromagnetic  oscillations 

(Stratton,   1941).     We   set 

JB(r,t)  = &(r)exp(-./Lt) (4.2) 

and 

-A. = k2/u<r   = k v ' ^ m 

so  that   (4.1)  becomes 

S72£+ fr2£=  0 (4.4) 

both -/i.   and k being  assumed real.    We have  of  course  slso 

V2? * k2£= 0 (4.o) 

From  (4.3)   the  time  of   free  decay  is  of  the  order 

[A'1)  ={X2/VKJ (4.6) 

increasing with the souare of" the linear dimensions,  v  is of m 

the general order of unity (mks) for metallic conductors, per- 

mitting a ready estimate of tha order of the decay times*  These 
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tiroes are fictitious, as we have pointed out before, since actually 

we must replace v by Lhe jQagastic eddy viscosity. 

The conventional scalar wavo equation can be solved by 

separation of variables in 11 different systems of coordinates 

(Stratton, 1941),.  Prom these solutions one obtains s eta of ortho- 

gonal modes by Imposing suitable boundary conditions.  For reasonB 

too tiorplex to be stated briefly the method cannot readily be 

extended to the vectorial wave equation} both the separation of 

variables and the boundary conditions present special mathematical 

difficulties«  sy3terns of* modes can be found for three types of 

geometry:  plane waves,, cylindrical waves and spherical waves.  The 

theory has grown up in a more or less ad hoc fashion, though 

Stratton attempts some systematization, following e arlier work 

by Mie, Debys and Hansen.  We have tried to develop the method 

used to solve the vector wave equation and the formalism required 

for boundary conditions and orthogonality in a fairly general 

fashion, so as to exhibit both the scope and the limitations 

of the method.  The ensuing formulas may be used In all the known 

cases of solutions.  We then proceed to cons truot. for spherical 

boundary conditions, the actual solutions ana to discuss in detail 

orthogonality and normalization. 

Vector Wave Formalism. 

In order to construct solutions of the vector wavs 

equation we start from the scalar wave equation 

V^ + k2^ = 0 £4,7) 

and shall derive from every solution of this equation three 

associated solutions of the vector wave equation (4.4)} one of 
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them is of the form 

U - V U> ,  V \7 . u +• k u =0 (4.8; 

where \Js ±3  any suitable solution of (4.7)%   these are the long- 

itudinal waves of vanishing onrl«  A second solution is of the form 

J^xyZ, (4.9) 

where 7^ is a vector field to be specified later.  A third solution, 

finally, is 

kg.= VxX. (4.10) 

The vector fields (4.9) and (4.10) are transverse, of vanishing 

divergence. There seems to be no simple way other than (4.S) 

and (4.10) to derive a pair of linearly independent transverse 

vectors from a scalar. 

We can rewrite (4.9) as 

T = P"^ x Z^-K v^Vx Z, (4.11) 

On substituting this into (4.10) we find after some straight- 

forward calculations, using (4.7), 

kjL» k%/Jfc+ S7(Vvf • Z) 

+ K7v^(v • z) - 2(\7\y • V)z.+ yVi7 x &     (4.12) 

Again, since 3^  and T^ are assumed, to obey the wave equation (4.4) 

which may be written 

Vx  V x 3 - k23 = u , ^7 JL V  x T - k2T = 0   (4.13) 

we have from (4.10) and the second of (4.13) 

^xj[= k£ (4.14) 

Equations (4.10) and (4.14) exhibit a characteristic symmetry 

between the vectors S^ and T.  Next, from (4.9) and (4.14) 
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^x£- kV7* VJ>& (4.15) 
• 

On the other hand, the curl of (4.12) agrees with (4.15) only 

If the iaal, three terms In  (4.1S) are th© gradient of a scalar. 

We shall consider JZ as a quantity determined by the particular 

boundary conditions, hence related to the system of coordinates 

chosen, whereas v^ is ,nny one of a set of orthogonal modes.  For 

the present purpose we may therefore assume v^> to be effectively 

arbitrary, and ^Z. and vx/ as independent of each other.  It 

follows that the last term in (4.12) must be the gradient of a 

scalar in itself since it contains v«^/, whereas bhe two other 

terms contain the derivatives of ^ •  These two terms both in- 

volve ^^; they have arbitrary but in general different dir- 

ections j hence each of their, must again be the gradient of a scalar 

separately.  From the first and the third of the three terms there 

follows ^* Z  = const*, and XZ x J5, = const., respectively} hence 

Z is a linear function of the cartesian coordinates. Combining 

this with the requirement that the middle term, (v-7'^ *  ^ )Z_ 

must be a gradient we find two solutions:  One is clearly 2C- 

uonat.j we may for instance take 2^ to be a unit vector in the 

z-direction. ^he  other bolution is Z = r, where r is the 

radius vector from the origin.  This latter choice gives 

(^?\y  • ^7 )_r = Vy,  The former choice is used with plane and 

cylindrical waves, the cylinder axis being in the z-directionj 

the latter is appropriate for spherical waves.  We then have from 

the preceding formulas, for constant^ 

T=Vyx2.;   &= k>f&+ k^jf/ai) (4.i6) 

and for Z = r, in pclar coordinates 
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X -   v y  *•,& »    J* ** k\f£. + k"-\7(5r^//or) (4.17) 

We may summarize the  last  two formulas by 

jp =  ^Vxjj,   i,= kyl+k"i7(^)i (4.18) 

We shall now write down formulas from which the orthogonality 

relations of these vector modes may be derived for appropriate 

boundary conditions.  Individual scalar modes which satisfy (4.5) 

will be distinguished by indices, \U- \^is„   . • •} the vector modes 

derived from '-js^  by (4.18) and (4.8) will be designated by 

S-, , T, , U, . We now have 

/^ • T2dv = /^ x \7y2 • &  dV - /\7 x (vfx Vsf/^) • & dV 
(4.19) 

= /V- [^x^V^e xX]dV = ^1^2 *-& * — d<r 

v/here ri_ is   the  unit  normal   to  the   surface,   directed  outwards. 

Next we  find,  using  Green's  theorem 

f&L   * ^2dV = VVs^Vl   * £ dV + V1 /^Vl   * ^NV'dV 

(4.20) 

= Wa^i " -5 dv + VVW'i^*7 * V1/(v//2),OV/i/an)dcr 

and finally 

-«i " ~s2dv " V^va)' x Vv^i • -2. dv (4#21) 

Some  further formulas  are  required  for the   orthogonality 

relations  among vectors  of the  same  type.     For the JJ-vectors we 

can  transform  the   integral   over vVp     . v V^     by means   of   the 

conventional  Green's   theorem  as   in   (4.20).     For  the T-vectora we 

find from  (4.18) 

J$l  ' J?2dV = /^v^i'Vvfg^dV  - /(£ •^7yi)(Z • Vs^2)dV   (4.22) 

  I _. . m 
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Further useful relations  follow from the  vectorial  equivalent  of 

Green's formulas   (Stratton,   1941).    F0r   two arbitrary vectors, 

provided   \7 * ^B = 0. 

/[(V x A)-(V x B)   + A5?V)dV = fk x  (V x£)   *   ndo~(4.23) 

which may readily be  proved  on  converting  the right-hand  side   into 

a volume   integral  by Gauss'   theorem,     ^he  equivalent  of  Green's 

second formula  is 

//V^72B-B.Va&7dV - f\k x  (VxJ)-Bx(Vx A)>dn^(4.24) 

provided ^ • Jl = XT' * JB - 0U     From  (4.23)  we obtain an expression 

relating ths orthogonality of  the S-vectors  to  that of the jT-vectors: 

k^r/3-.   •  SQdV = T&/%   '  T'cdV + k„y&n   x T„   •  ndc~     (4.25) 

The  surface  integral  on the   right  can be further  reduced by means 

of  the   identity,   following from   (4.18) 

yS,  x T0   •  n do-   = f2     •   n x S,   do~ 

(4.26) 

= k^v+^Vvx^ x^).(n x£)d<r   - ^V(V^2 
x^)*^^i)'^^)de" 

From  (4.24)  we  get  the   two useful relations 

(k?  - kl^l   * ^2dV " /[k#i :t ^2   - kli"2  ^ %] *   n (M4.27) 

(k?  " kl^l   * ^2dV = 4^1 X S2  ' kl52  *: JX]  s  * *rt4.25} 

If   our  conducting body  is  of   finite   size   (rectangular box 

or  cylindric  pri3m for  cartesian coordinates,   circular  or  ellip- 

tic  cylinder for  cylindrical coordinates,   sphere  for  polar 

coordinates)  we must  join our  solutions for the  inside  to the 

solutions of Maxwell's equations  for free  space  at  the  outside. 

Assuming  that   £.   and ji have the  same  values  inside  the  conductor 

.    .,- J» — , 



as  outside,   the  boundary conditions  impose  continuity of  all  field 

vectors,   except  that  there may be   a  surface  charge,  T",   per- unit 

area  so  that   for  the   normal  cumponents 

(Voutside  -(Vinside55^ (4'29) 

In cuter space we have a field wJiich adjusts itself 

quc.sistatically to the fields that prevail at the boundary and 

that are the result of the validity of (4;1) and (2.1) on the 

inside.  Since the displacement current is negligible, we have 

from (2,1) and (2.2) for the outside field 

^2£.= 0 ,    T7*£ =0,  V*JB.= 0,^7'E,= 0   (4.30) 

It is not, in general, possible to choose boundary con 

ditions for the solutions of the vector wave equation such that 

a fully orthogonal system of vectors JJ, JT, U^ results.  The boundary 

conditions on \-js    are of course determined by the boundary con- 

ditions of the electromagnetic field quantities} it then appears 

that "almost" all the modes are mutually orthogonal, but that for 

certain pairs of vectors the orthogonality fails (Stratton. 1941). 

Fortunately,, this failure is sufficiently limited so that it does 

not seriously hamper the use of the formalism for the solution of 

our physical problems0  Tnere Is one case where full orthogonality 

obviously obtains:  for plane waves In a rectangular box with 

cyclic boundary conditions at all faces. 

Modes of the Sphere. 

We shall be principally interested in spherical conductors, 

We assume uniform conductivity and let R be the radius of the 

sphere. We shall assume the outer space to be vacuum.  Consider 
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first the inside. We have for the solutions of (4.7), apart 

from an arbitrary constant, 

where 1  is a spherical Beaael function, 

5n(x) = (n/fe*)
l/2j n+l/2 (x) (4.3S) 

and where   the  k       are   determined by the boundary conditions* ns 
The Y;  are  the  conventional  surface harmoncis.     «e  now writ^ n 
down the expressions for   the vector modes  in polar  coordinates  in 

terms  of U-/ e    They  are  given by  (4.8)  and by  (4.17) which yield 

l^v- 

(4.33) 
1 

U    =  (r  sin &-)  ~b^/h<p 

This type of mode i3 purely longitudinal.  Next we have 

JCr =• 0 , T.^== (sini^'^-a^/acp 

This type of mode will be designated as toroidal. Finally 

>-l.^ 

(4,34) 

Jlr = kry/   4 k-1a2(r^/ar2 - n(n+l)(kr)_1^ 

.-!-£ S    =   (kr)"xa  (r^)/aratf>- }     (4.35) 

S_ =  (kr sln^'^^ir^/hrby J 

This  type  of mode will  be   designated  as  pololdal. 

Tr.«    <->>&     <->n4-.aT»     <ano/>o     ••-.>>*»    fM «~1 r9     ami c-r. * r-.n «i    nannno     v. n    +-V>a 

vectorial Laplace equations (4.30)t the corresponding generating 

scalar is 

v^= C r^"2**^ <j>) (4.36) 
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wher-e € will be chosen so as to assure continuity with the inside 

solution by virtue of the electromagnetic boundary conditions. 

The solution IJ defined by (4.8) or (4,33) continues to 

hold in the limit k = 0.  In the case of the transverse modes, 

however, we must rsdefine our expressions so that (4.35) remains 

finite for k = 0.  This is easily done by considering the vectors 

kS^ and kT_ in place of the above,  ^hen kJT, vanishes as k goes to 

zero and one readily verifies that kS = -ngf this, furthermore, 

agrees with (4,14), namely T = v x (jg/k) ~ 0.  Hence on the 

outside there exists only one solution which is essentially 

longitudinal^ but may if de3irea be expressed in terms of a 

poloidal vector field with the generating function (4.36). 

We shall now construct the free, aperiodically damped 

electromagnetic modes.  Again, £., g^will designate field vectors 

from which the time factor has been split off, by (4.2).  The 

longitudinal modes (4.33) are readily constructed, but they are 

purely electrostatic and the corresponding magnetic field vanishes, 

As indicated in Sec, 3 they are only of subordinate interest 

for the dynamo problemj their formalism Is moreover quite 

straightforward. 

For the transverse modes we have from the field equations 

together with (4.2) and (4.3) 

V7* .3 = k(n<r,gA). *  7x (uT|/'k) =kB^      (4.37) 

If we introduce a vector potential it Is related to JE by 

A = ELt\ = ua-EA* 

The equations (4.3 7) are identical in form with (4,10) and 

(4,14),  Moreover, the vector wave equation (4.13) is a 
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modest     the toroidal magnetic modes where J3 is of typo JT. and \,hm 

polc?1.dal magnetic modes where J*. is of type J5. 

We first consider the toroidal magnetic modes.  To obtain 

an idea of their geometry we note from (4.34) that for rotational 

symmetry (zonal harmonics) there is only a <p-component| hence the 

magnetic lines of force coincide with the circles of latitude. 

For the toroidal dipole mode B has the same sign throughout, 
9 

whereas  for  the   toroidal   quadrupole mode  IJ    changes   sign  at  the 

equator. 

We have   seen that the T^-vectors vanish identically in 

outer  space where   CT-   =• 0.     Hence  the boundary condition is 

J3 = 0 at  the  surface  of  the  conducting  sphere,  r = R-     From 

(4.34)   and (4.31)   this given the  characteristic  equation 

JX„B)  = 0 (4.39) 

The k  „ form a twofold  sequence,  depending on the "quantum numbers" 
I* 3 

n and s, the latter numbering the successive zeros of 1 . The 

electric field corresponding to this mode is poloidal) by (4.35) 

its xiormal component vanishes at r = R, but the tangential com- 

ponents do not in general vanish.  We can fulfill the boundary 

conditions by combining an external muilipole field with a surface 

charge defined by (4*29),,  (It 3hould be pointed out thct the 

transverse vector modes start with n = 1} the solutions 

corresponding to n = 0 vanish.) 

We next consider the poloidal magnetic modes. For zonal 

harmonics, that is rotational symmetry, the magnetic field lines 

are confined to the meridional plane?.  TQ fulfill the boundary 
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condition for B^ for the general mod© of this type we must have 

continuity of all three components at the surface of the conductor. 

It is convenient to express the external multipole field in terms 

of poloidal vectors (4.35) rather than by the longitudinal 

JJ-vectors; we have shown above that this is legitimate.  Now for 

this external field whose generating scalar is (4.36) the relation 

of the tangential to the normal components of & is given by 

9(rv^/)/dr = -n vJ/ •  If there is to be continuity of all components, 

the internal ^U  must copy the ssir.s condition at the surface, 

r = P.,, that is 

»<rj ) 
3r     Jn - 0 (4.40) 

Jr = R 

This is the characteristic equation for these modes which may 

readily be transformed Into 

1  ,(kP_R) = 0 (4.41) 
Ii~A  n» 

Moreover,   if   (4f.36)   is   the  generating   scalar for  the external 

S-vectcrs we  obtain 
,n+l. 

ns      "       "nl~ns" C«.  - f'-iJK.J*) (4-42) 

The electric field of these modes is purely toroidal.  Since there 

can be no toroidal field In empty outer space, the boundary con- 

ditions for JL cannot be fulfilledj in order to satisfy them we 

would have to go to a higher-order approximation.  Since the 

aperiodic modes decay extremely slowly, we could try to fulfill 

the boundary conditions by assuming a minute electrical conduc- 

tivity in outer space which would make a toroidal electric field 

possible and would also correspond fairly closely to geophysical 

and astrophysical conditions.  In any event, the electric field 
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is  again negligibly small. 

Wo  next  discuss  the  orthogonality and normalization of 

the modes.     From  (4.20)   and  (4.21)   one readily verifies  that  all 

^••vectors  are  orthogonal  to  all S-vectors  over the  interior of 

the  sphere.     Similarly,   it follows from  (4*19)   that  all ^-voctors 

are  orthogonal  to   all U-vectors,     The  S-vectors  are,   however,   not 

orthogonal   to   the U-vectors   (Strabton,   1941)  but  since we  are  not 

interested   in  the   longitudinal field  components  this  fact will 

not  impede  our  calculations.    Hext,   consider  the mutual orthogon- 

ality  and normalization 6f  the  toroidal modes,     ne   introduce   the 

abbreviation    ^?   by 

V   = r-1r(d/ar)  + r^V* (   .     (4.43) 

so that \7'   is  a gradient  vector  along the  surface  of the unit 

sphere.     Applying  (4.43)   and   (4.31)   to   (4.22)  we find 

J%x  •  T2dV = /J1JgP2dP -/X7'?!   *   ^'YgdCT (4.44) 

To evaluate  the  surface   integral,   consider for a moment  a potential 

function, ^ = rT1*     Applying Green's  theorem to  two  such func- 

tions  we  find,   on using   (4.43), 

/'"VVi • Vy2dV ^/^-^dv = /^1 -ggl dcr 

If we now choose as the volume of integration the Interior of the 

unit sphere, the integrals are readily evaluated and yield, 

provided we use complex harmonics, Y• = Pm( cos t^")e ^, 

X ~   f V'Y, • C'V-dC" = 0 for* V. 4 Y* (4.45) 

where the asterisk desigratss the conjugate complex, and 

X - /jV^fW  = nin+1) /| Y^!2dcr 
n (4.46) 

_  4iin(n+l)   w   (n+m) 1 
2n + 1    •    {n=m)I 
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In order to prove orthogonality of the radial functions 

for fixed n and variable x we require the boundary condition for 

the toroidal mudes which is L—  0 at the surface of the sphere, 

by (4.39). With this, the radial integral of (4.44) may be 

evaluated from the formula, proved in the theory of Bessel 

functions (see Jahnke-Emde, Tables of Functions) 

/ J^(irx)x2dx « (x5/3)[j*(lnO - JrXL(k*)Jn+1(kx>J   (4.47) 

which now reduces to 

o 

The right-hand side  is of course  essentially positive  in spite 

of the minus  sign in front. 

For-  the poloidal modes we   again discuss first  orthogonality 

with respect  to  the  spherical  harmonics.     Using   (4.4.3)   in (4,17) 

we  see that S - arY + b 'v7 fY where  a and b  are functions  of r, 

and orthogonality with respect  tc  the Y's follows from  (4.45). 

To establish the  orthogonality of  the radial functions   and the 

normalization, we first  derive from   (4.28),   (4.26)   and  (4»43) 

the  relation 

X k1       9(rj2)       k2 3(rj1)] 
^5l*§2dY = I    5       iTh       5r.       " XT h       ar     1 <4»49) 

^ *2 R(k£-*g) L   2 x Jr = R 

where X is the surface integral (4.45-46).  If we multiply the 

bracket by k,kp and substitute the boundary condition (4.40) the 

right-hand side is seen to vanish for n„ = np, provided however, 

k, J* kg| for k, = kg the formula V-ecomes invalid.  Thus the pol- 

oidal mod es are orthogonal uvar tho interior of the sphere.  Sj.r-ce 

for given n the different radial modes have the same external field 

apart from constant factors, the modes are not orthogonal on 
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integration over  all  space.     For k-t   « k„ we use   (4.25)   and  (4.26/ 

and obtain r 

o                       oil 9(*4„) 
/  ! P!  dv - y / Tj   av r? i ri     — -   ,    'n 8r /   I v Yi  dcr 

r=R 

The first  5.ntegral  on the  right   is  given by   (4-44)  but  to  evaluate 

it by  (4.47)   we must now use  the  boundary  condition  (4.41).     At 

the  same  time we can  simplify the bracket  on the  right by me ans 

of the form  (4.40)  of  this boundary condition.     The result  is 

/ l£/2dV = [R
3
/2 + nR/k?  ]£(k    R) / /\7'Y/2dcr (4,50) 

inside L n J n    n 

We finally compute  the  overlap of  the  external  fields for 

the   same n but  different  values  of  s.     Since  most  of the  preceding 

general formulas break down  if  applied  to  the   outer   space,   the 

calculations   are  conveniently carried out  directly from  (4.35)   on 

using the generating scalar  defined by  (4.36)   and  (4.42).    The 

result  is 

/| SpdV =  (nR/k k2)J1(k1R)J2(k2R) /JVf?i2A<r       (4.51) 
outside 

For k,  m fc.,  this  corresponds  exactly to  the  second  term in the 
X JG 

bracket of  (4.50).    These  expressions.represent  of  course  twice 

the magnetic   energy of  such a mode  on the  inside   and  the  out3ide, 

respectively.     Hence  the  ratio of  the  outside  to  the  inside  energy 

Eoutside/'E:nside "  f1 +  ^^/^ <4*52> 

Let us finally obtain  an estimate  of   the   decay  time  of 

these modes for  the  earth's metallic  core.    We   3hall   see  later 

that the toroidal   dip o la, modes  cannot be  appreciably  excited, 

the most  significant modes  being the  poloidal  dipoles   and  the  tor- 

oidal  qucdrupoles*     "or   the   former we have   i   (kR)   =  G  and  for the 

latter   Jg(kR5   =  0.     The  lowest root  for  the  dipcle   is kR = %,   the 

lowest root for  the  toroidal  quadrupols   is  kR  ~  5.8.     From  (4.2) 
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and  (4.3)  the  decay time   ia  ucr/V*.    With R = 3.5  •   10    meters 

and   <T = 10    rnkii,   one   tenth of  the  conductivity of  ordinary iron, 

we  obtain 50,000 y»ars  and 14.000 years respectively.     These 

figures are  of course purely nominal,   since  the   actual decay times 

are  determined by  the magnetic  eddy diffusivity  and  are  no   doubt 

much smaller,  perhaps  closer in order  of magnitude  to 1000 year3, 

as may be   judged from certain features  of  the  geomagnetic   secular 

variation  (Elsasssr,  1950). 
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Kinematics  of  Induction. 

Ws now  consider the   induction equation  in  the   absence  of 

dissipative  losses;  by  (2.11) 

3B/at = \7 x   (v x B) (5.1) 

or   its  equivalent   (2.15),   namely, 

dtf-^/dt =   (^"1B  •  ^)v (5.2) 

and the corresponding integral theorem (2.14) which is 

d/dt / B dcr = 0 (5.5) 
'     n 

In terms  of   the   «/ector potential we  have  from  (2.28) 

3A/at = v x (7 x j,) (5.4) 

i   • 
I which may be written alternately 

HA/dt = vx(7zA) + (v-'V)A (5.5) 
*•* *VH *WN *»**• ***** 

and (5.3) becomes 

d/dt / A, • dC.= 0 (5.6) 

It is at once apparent that the induction process does 

not involve any material constants of the medium.  The relative 

rate of change of the magnetic field is of the order f v/'X > j 

•chus if we wait for a time during which a fluid particle travels 

a distance of the order of the linear dimensions of the system, 

the amplification of the field can becems appreciable^ for much 

longer times the amplification may become very large under con- 

ditions otherwise suitable which will be discussed later. 
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rt has been found by Parker (1954) that the conservation 

equations given above can be integrated with respect to !,he time. 

In order to avoid some of the mathematical complexities of the 

full tensor-analytical treatment we shall adopt a mixed formalism 

in which we pass from vector to tensor notation as required. 

We Integrate (5.2) over a volume, getting 

/ f (d/dt)(B/f)dV = / (B • V)Y. dV (5.7) 

Now we may  show  that 

/ (B   •   *7)v dV = / v B  do" (5.8) 
~~ «** «•**    n 

To  prove   this,   consider the  x-coraponentf  we  have  the   identity 

B. • \7vx =  X7 •   (vxB)  - vx(^7 • B) 

and the last term vanishes.  On applying Gauss' theorem on the 

right, (5.8) follows. 

Let us assume that the volume of integration is attached 

to the fluid particle a and moves with the latter.  Then B d<T* 

Is an Invariant by (b.3) and may be written (B d<r)" where the 

superscript o will here and in the sequel designate the values 

of variables at an initial instant, t = 0.  Thus we shall write 

JEp ,   v°, r° for flcll9 velocity, and position pertianing to a 

particle at time t = 0-     This is essentially the Lagrangian method 

of hydrodynamics where the variables referring to time t are 

considered as functions of the variables which characterize the 

same fluid particle at time t» •= 0.  Thus 3. v, r are functions of 

B , v°, r^ and of t; In components we consider B., v., x4 aa 

functions of the initial values B° v\,  x^ and of the time, to 
.'.        XX 

simplify  the  formalism we   shall   confine   ourselves for the  present 
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fc., 

a;." 

I' 

to  cartesian  coordinates.     We write   \7'     for  the   oper*ator with   "he 

components S/3x.« 

Now since B do~ =s B dC~ " by (5.3), we see from (5.8) that 
n      n     J . 

/ (& • V'Jv dV = / (B? • \/°jv dV° 

where on the right v is considered a function of the x,•  Since 

?dV = 3   dV this gives 

. - »_ o .  n . i y MB • v; - ir/r_HB-  • v;jv clV = U 

Here we   can equate   the   integrand  to   zero  since  the  volume   of 

integration  is   arbitrary.      If we   substitute   in   (5.7)  we  find 

d/dt(B/p)   =   [(BC/f°)   • V°jv. (5.9) 

This   integrates   to 

JB/P   -B°/f° =   feVf)   •V'jir-0) 

But   since  B    =   (B°   • \7    )r   ?   identiallly,   this  reduces   to 

j//=   f(B°//°)   -^°Jr (5.10) 

which  is   the   desired  integral,   expressing B^ at   time  t   in  terms  of 

3     and the kinematical properties   of   the  fluid. 

We  next discuss   the   conservation  theorem for-   the  vector 

potential.       Equation  (5.5)   is  closely related   bo   a well-known 

vector-analytical   identity.      If we   let 

V(v .  A)  - [<C7(v  .  A)]^coriSU  +[V(V..  *0A=ocnst.   (5.11) 

we  find readily that   (5.5) may be written 

d£/dt  =  [V(v   •   A)]- v=const, (5.12) 

For  sevsral   of   the  subsequent  formulas   of   this   section  the 
author   is   indebted to Dr.  Willaim  L.   Bade. 
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If we substitute (5.12) into (5.11) we get 

dA/dt = -A x (K7  x v) -(A. V)v+ ^?V     (5.15) 

where \-p = v • A may usually be ignored for the reasons explained 

in Sec. 3,  These expressions may be greatly simplified on using 

tensor notation.  By viture of (5.11) the relations (5.12) and 

88 •EWfei) + 9vf/dxi 
JrC 

(5.14) 

To   obtain the  time-integral   of  the  conservation  equation  it   is 

best to start   over   again from  (5.6)  which may  be   integrated 

directly giving,   in  tensor  notation, 

21/ (A,dci - Ajdc°) = 0 (5.15) 

But 

ji   o   _ dc.   ~ 
k 

dc  (3x°/3x. ) 

On  substituting this   into   (5.15)   the   integrand must be   the 

gradient   of   a  scalar; 

% = ?-Ak(3V/exi) + a^Vax1 (5.16) 
JrC 

which is the desirod integral for Al it may be compared with the 

corresponding formula (5.10) for J3 which, in the present notation, 

reads 

B±/f = SZcB^Hta/fccJ) (5.17) 

If we  drop   the   gradient   term  i'n   (5B16),  we   obtain  a  simple  relation 

on forming  the  scalar  product  of  A^andjB/f,   namely 

f        . 17 — 
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B/f = A°   •   B°/f°,     (d/dt)(A   '  B/f)  =  0 (5.18) 

So far we have   confined  ourselves   to  cartesian coordinates. 

For reference  purposes  we   give  the  expression  of  the  preceding 

integral  theorems   in  cylindrical   and   in  spherical  polar,   coord-?n?.te^s 

We shall  omit  the  density.?;   to   reintroduce   it.   it   ! s   -flrely nec- 

essary  to replace  B by B/f    and B°  by B°/f°.     The   calculations   are 

straightforward  differential  geometry  and  need not be  described. 
o 2 ?   1 /? Ir'   cylindrical  coordinates, j ,   <p,   z   (where   5 =   (x    + y')   '      i3  of 

course not   bo be  confounded with  the   density)   the field  transforms  as 

B     = 1L BS  + i- M- P°   + M- BC 
f     af°   ?     f° a<p     *     az°   « 

B    --= ?l£B?  + ±*&- B°  +y-^-B° (5,19) 

B     -25-BS + -L3£-B°*2L.B
0 

z       3fo    y       ?c   d(?)c     <p       _c     z -'   a?"     ^       3z' 

and the vector potential as 

Af " ST V * J aT" % •"• aT' Az 

Az " ^r* \ + y   az " \ + 35~ Az 

In spherical polar coordinates, r, J% <p we find for the field 

B  - I2•. B° + -— ^£- B° *• 1 5r  B° 
r  3r° r  v°  9^ * " r°sin^ 9„° "f 

B^^^BSJ-^BS  ?!  *l£  B°    (5.21) 
i *    8r° r  r° 3^     r.°sin^ 3<p°  ? 

! B    = r sintf-^- 5° - £.£l£!t*!L. B
c„ + r._siE±£ 1<IL- B! 

j * ar°   r r°     a^   ^    r
0
3inl£ 8<P°   * 

I 
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and for tha   vector potential 

-   O -,   o ^   c 

**      "ST Ar + r    W V+ r  Sin*    T5r    A<? 

-i   -.  o o  ^ _o c   ,    „o   -„o 
= 1 4*    A° 4, g, *»   Al-. r  5*n^ 3U A! (5.22) 

A    =        1        dr0 A° ...      r'°       g ° Ao       r°sin<£  g»"   .o 
(p " r  aini3-a<p      r   "   r  sind- 3$    A r  sirnS^ 3$      $ 

In the  Lagrangian formulation  of  fluid motion  we  are crrsoemed 

with the  trajectories   of  the  fluid  particles, 

r -  r(r°,   t) (5.23) 

Given these three relationships we can compute the partial dev- 

iatives appearing in the preceding formulas.  As a rule, however, 

we do not start from a set of trajectories but from a velocity 

field, v(r, t), corresponding more closely to the Bulerian point 

of view.  If the fluid motion is stationary we have 9v/3t - 0 

and ttte trajectories (5«23) are the solutions of the differential 

equations 

dr/dt = v(r, r°) (5.24) 

where it is assumed that the initial positions of the particles 
I 

may appear as parameters* j 

We may inquire into cases in which (5.24) can be inte- 

grated by general methods.  One such case is 

dx/dt = v (x, x°)   ,  dy/dt = v (y, x°) 
jt     i y     j. 

dz/dt = v„(z, x?) 

The integration can be carried out at once in the form 

t = / dx/vx - / dy/v - / da/vz (5.26) 

(5.25) 
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whence   the  trajectories   (5,23)  follow by  inversion of  the 

functional  relationship  between  t   and x,   etc.     Now  the  dif- 

ferential  equations   (5.25)   are  purely  algebraic  relationships 

with respect   to  the   dependence   of   the  x,.   upon  the  x. $  hence   these 

equations  and  their   integrals may be   applied  to  curv311nfisr  co- 

ordinates without  further   complications.     Among   the   solutions   are 

in particular helical   trajectories   such  a3 a  cylindrical helix   or 

a helix winding   along  a  cone.     Some  of  these motions  will   appear 

in our later  analysis. 

In  order   to  get   a clearer  though somewhat   elementary con- 

ception  of  amplificatory processes we  next  discuss  the  effects 

of   induction for  a field  trial   is  homogeneous  over  some  region of 

space.     By   (5.1?)   the  deformation  of   the  field depends  only  on 

the  components   9x./3x,    of   the   strain tensor,     (This  terminology 

agrees with the   conventional definition of  strains   the   strains 

are  here  finite  for  finite   times.)     If,   as  usual,  we  disregard  a 

pure  rotation  of   the  fluid   as   if   solidified   (in which case   it  is 

readily  shown that   the field rotates with the  fluid)  we   are  left 

with  a  symmetrical  strain tensor  which may be  decomposed  into   a 

pure  dilatation  (expansion  or  compression)   and a pure   shear. 

Consider first   a pure   shearing  strain*     We may   in  this   case 

assume   the  fluid  to  be   incompressible.     If we   let   the   original 

field be   in  the  z-directicn   and  the  fluid motion  in  the  x-direction 

(5.17)   reduces  to 

Bx = Bz(&c/3s°)   t     By = °  9     K •=* B° (5.27) 

The  field  energy  is 

1/2  B2  =   1/2   (B°)2[l   !-   Ox/2*°)2J (5.28) 
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The field increases linearly with the strain.  We see that ampli- 

fication of a field occurs whenever a velocity shear field is 

superposed perpendicularly upon &n existing magnetic field.  The 

amplification is linear in time- for a stationary motion as appears 

if we write the first of (5.27) in the form 

Bx = Bl   t (9Y
X/

SZ
 > 

This is illustrated in Pig. 1 which shows on the left tlae velo- 

city profile and on the right the "stretching" of the original 

^dashed) magnetic lines of force in the x-direction.  In principle, 

an ampiificatory process of this kind may be continued indefinitely, 

especially if the velocity field is circular (Sec. 6) rather than 

along straight lines. 

i a 

1 

I 

-* 

^ 
\ 

•» 

-£ 
 > 

Figure 1 

It i'3 interesting to no ue that this simple process by 

(5.28) always gives an increase of the field energy.  In order to 

see what happens to the energy in more general cases_, let us return 

. •  ~-_  fc. 
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to (5.17) and transform the stress tensor to diagonal form by a 

suitable rotation of the cartesian axes to which the x, refer 

(we leave the axes to which the x, refer unchanged).  Let; B^ now 

refer to the components of B in the new axes (the B., remaining 
I 
' uronangeuy.      ±1   d „ 

tensor the  enerrv becomes 

r urchsxiged).     If €„   are   the  elements   of   the  diagonalized stress 

J 1/2 II   BZ
± -   1/2 2__(B°)2£* (5.29) 

whereas the   condition  of   incompresaibility  (pure   shear)  merely 

requires    c      £ *   ~ 0»     «°*»   (5.29)   can correspond to  &   decrease  or 

an  increase  of  the magnetic   energy,   depending  on  the magnitude 

of  the    £ .,   but  for  sufficiently large   strains  there  will be  an 

increase.     This   tendency  of  the  magnetic   energy  toward  increase 

J is   in  the  long  run  offset  by tba  action  of   the  pnndoT»omotive 

forces   (2.17)  when they grow  large   as the  field   increases;     By a 

well-known principle  these  forces   act  always   in   such   a w ay  that 

they  in turn  tend  to   decx'ease  the magnetic  field  energy.     (As 

pointed  out   already.,   the  dynarco   theory is not   based upon   a trend 

toward  statistical  equilibrium hereby  implied,,   but  on certain 

general  dynamical  principles  which will  be   discussed   later.) 

Consider  the   case   of  a pure   dilatation  (expansion or  con- 

traction)   in the  absence   of   shear«     Let B~ be   in  the  z-directton 

and   assume  for simplicity  that   the  stress   tensor   is   diagonal 

along  the  cartesian  axes  given.     Then  (5.17)   reduces  tn 

B2   -   (f/f°)B°   (dz/az°) (5.30) 

We may exemplify this by  a gas  cloud  containing  a homogeneous 

magnetic field  (for   instance   a  cloud  of   ionized gas   shot out  by 
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I 
che sun) expending into a vacuum,  ^he total magnetic energy of 

the homogeneous cloud is proportional to B /p.  If we let the 

cloud expand laterally, constraining the particles so that they 

cannot move in the z-direction, the magnetic energy diminishes 

proportional to f%   if the cloud la prevented from lateral expansion 

and expands only along th=» z-axis, the magnetic energy goes as 

i     9  thus it would increase on expansion} if the cloud expands 

laterally and contracts longitudinally (as suggested by the direction 

of the Maxwellian stresses) in such a way that the density remains 

unchanged, the magnetic energy changes as (Az)~ where Az is the 

change in extension in the z--direction,  For a gas, the internal 

thermal energy changes on expansion as f where Y"  is the ratio 

of the specific heats*  Under suitable constraints the magnetic 

energy may thus increase at the expense of the thermal energy. We 

might remark that for a volume with a homogeneous magnetic field 

|  i the ponderomotlve forces (2.17) vanish on the insldej they appear 
1 

as stresses on the boundary of the volume and are transmitted to 

the inside through hydrostatic pres-; i-es, 

a 
il 
Si 
II 
if 
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